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The wall-jetting effect in Mach reflections in viscous pseudo-steady flows (as obtained
in shock tubes) is investigated numerically. The W-modification of Godunov’s scheme
has been modified to solve the Navier–Stokes equations using a splitting into physical
processes. The viscous terms are approximated using an explicit scheme with central
differences in space and a two-step Runge–Kutta method in time. Two analytical
models are considered. The first is a self-similar viscous flow model in which we
consider a flow field with characteristic size L, and assume that as the characteristic size
grows from 0 to L, the viscosity of the gas ahead of the shock wave varies from 0 to µ0.
Consequently, the flow can be made self-similar by using the parameter Re = ρ0a0L/µ0.
The second is a real non-stationary viscous flow, in which the molecular viscosity
during the growth of a characteristic size from 0 to L remains constant and is
equal µ0. As a result the viscous effects are only partially accounted for in the self-
similar viscous flow model in comparison to a real non-stationary viscous flow model,
since they are smaller in the former case. The present investigation complements
our previous investigation of the wall-jetting effect in Mach reflection in inviscid
pseudo-steady flows (Henderson et al. 2003).

1. Introduction
The non-stationary reflection of a plane shock wave over a straight wedge has been

investigated quite extensively in the past four decades. Details on this type of reflection
can be found in Ben-Dor (1991). The state of knowledge regarding the transition
criteria between the various types of reflection wave configurations is summarized in
Li & Ben-Dor (1995). Under the assumption that the fluid is inviscid the flow field
can be regarded as self-similar (see e.g. Jones et al. 1951). The solutions of the Euler
equations for this case are stationary (pseudo-stationary) in a frame of reference
attached to the incident shock wave. Using an inviscid model, Henderson et al. (2003)
showed, in the course of their numerical investigation of the jetting phenomenon in
Mach reflection, that these stationary self-similar solutions could become unstable,
and as a result the flow field could become time-dependent. Henderson et al. (2003)
also showed that this instability-driven non-stationarity has usually a local oscillatory
character, i.e. it manifests itself only in certain regions of the flow field.

In the present study the simplifying assumption of an inviscid flow is removed
and a more realistic model that accounts for the viscosity is used. Consequently, the
Navier–Stokes rather than the Euler equations are solved numerically. Owing to the
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fact that the characteristic size of the flow field, L, grows linearly with time L ∼ Dt
(where D is the velocity of the incident shock wave) the Reynolds number, i.e. the
ratio of the convective term to the viscous term, varies with time too.

Therefore, when the viscosity is accounted for, the problem must be formulated as
a non-stationary one from the very beginning. However, this non-stationary flow can
become unstable also, and similarly to the jetting phenomenon in the case of inviscid
flows, fluctuations of the flow parameters could occur due to local instabilities, e.g. in
the wall-jet.

Clearly, it is worthwhile to separate these two factors in the case of non-stationary
flows, and study them separately. This indeed is done in the present study by using a
self-similar viscous flow model.

In the self-similar viscous flow model we consider a flow field with a characteristic
size L, and assume that as the characteristic size grows from 0 to L, the viscosity of the
gas ahead of the shock wave varies from 0 to µ0. Consequently, the flow can be made
self-similar by using the parameter Re = ρ0a0L/µ0, where ρ0 and a0 are respectively
the density and the speed of sound of the gas ahead of the shock wave. Note that
while in the real non-stationary viscous flow, the molecular viscosity during the growth
of a characteristic size from 0 to L remains constant and is equal µ0, in the model of
self-similar viscous flow it grows from 0 to µ0. As a result the viscosity is smaller in
the self-similar viscous flow model than in the real non-stationary viscous flow model.
Hence, the viscous effects are only partially accounted for in the self-similar viscous
flow in comparison to a real non-stationary viscous flow. Therefore, in the range of
Reynolds numbers in which a self-similar viscous flow is stable, the non-stationary
viscous flow is also stable. Also, by comparing the solutions of the non-stationary and
the self-similar viscous flow cases one can estimate the effect of the non-stationarity
that results from variations in the Reynolds number during the evolution of the
flow.

2. The governing equations and the numerical method
We consider a plane incident shock in a perfect gas (γ =1.4), with Mach number

Mi =D/a0, diffracting over a wedge of angle θw. The problem was analysed by
numerically solving the following system of mass, momentum (Navier–Stokes) and
energy conservation equations for a viscous heat conducting gas:

ρt + ∇ · (ρ v) = 0, (1a)

(ρ v)t + ∇ · (ρ vv) + ∇p = ∇ · τ , (1b)

Et + ∇ · [(E + p)v] = ∇ · (τ · v) + ∇ · (k∇T ), (1c)

where the components of the stress tensor τ are τ ij = 2µeij − 2
3
µδij ∇ · v and eij =

1
2
(∂jui + ∂iuj ) are the components of the strain tensor e.
For a two-dimensional flow of a perfect gas having a velocity vector v = (u, v) the

above system of conservation equations reduces to the following form:

ρt + (ρu)x + (ρv)y = 0, (2a)

(ρu)t + (ρu2 + p)x + (ρuv)y = F1, (2b)

(ρv)t + (ρuv)x + (ρv2 + p)y = F2, (2c)

Et + [(E + p)u]x + [(E + p)v]y = uF1 + vF2 + Q + (kTx)x + (kTy)y, (2d)
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where

F1 = 2(µux)x + [µ(uy + vx)]y − 2
3
[µ(ux + vy)]x , (3a)

F2 = [µ(uy + vx)]x + 2(µvy)y − 2
3
[µ(ux + vy)]y , (3b)

Q = 2
3
µ

(
(ux − vy)

2 + u2
x + v2

y

)
+ µ(uy + vx)

2. (3c)

The following relations are also used:

E =
p

γ − 1
+ 1

2
ρ(u2 + v2), T =

p

ρR
, µ = µ0

(
T

T0

)0.648

, k =
µ

(γ − 1)Pr
.

The solution of the above system of partial differential equations is completely
determined by the parameters: D, θw, γ, a0, ρ0, µ0, T0 and Prandtl number Pr , where
a subscript 0 denotes the initial state of the quiescent gas ahead of the propagating
incident shock wave. These parameters enable one to define a unique combination
of parameters that has the dimension of length, namely, a−1

0 ρ−1
0 µ0. Therefore, the

problem does not have self-similar solutions that depend solely on x/t and y/t .
Let us now change the formulation of the problem by assuming that the dynamic

viscosity µ0 varies linearly with time, i.e. µ0 = κ0t , where the time is measured from the
moment that the incident shock wave reached the leading edge of the reflecting wedge.
In this case the governing parameters are D, θw, γ, a0, ρ0, κ0, T0 and Pr . Unlike the
previous case, a combination of parameters that has the dimension of length cannot
be defined by these parameters. Thus in this formulation the problem does not have
a characteristic length, and hence it allows self-similar solutions. The set of governing
non-dimensional parameters for this formulation of the problem is

Mi =
D

a0

, θw, γ, Pr,
ρ0a

2
0

κ0

.

The last non-dimensional parameter can be rewritten as

ρ0a
2
0

κ0

Mi

cos θw

=
ρ0a0

κ0 t

Dt

cos θw

=
ρ0a0

µ0

L.

Here L is the distance OE that has been travelled by the incident shock wave along
the reflecting wedge surface (see figure 1). Hereafter we will refer to this parameter,
ρ0a0L/µ0, as the ‘Reynolds number’ of the problem in the self-similar viscous flow
formulation and denote it as Re, i.e. Re = ρ0a0L/µ0.

Note that while in the real non-stationary viscous flow formulation (with a constant
viscosity, µ0) the Reynolds number grows with time, in the self-similar viscous flow
formulation (with a viscosity that varies linearly with time, i.e. µ0 = κ0 t) the Reynolds
number is constant. Consequently, in the following we will refer to Re = ρ0a0L/µ0, in
the real non-stationary formulation, as the instantaneous Reynolds number.

The W-modification of the Godunov method, which has second-order accuracy
in both space and time (for details see Vasilev 1996), has been used as the basic
numerical scheme for solving the above set of governing equations.

Curvilinear moving grids were used in the calculations. The initial position of the
computational domain is shown in figure 1. The boundaries CT and TD were used to
track the reflected, r, and the Mach stem, n, shock wave fronts during the calculations.
The gas parameters behind the incident shock wave, i, were set as the initial
conditions for the entire domain. In the production runs we employed the result
of the previous computation as the initial condition for the next calculation in order
to reduce CPU-time.
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Figure 1. The boundaries of the moving computational domain. CT and TD are used for
tracking the fronts of the reflected, r, and Mach, n, shock waves. Mi is the incident shock wave
Mach number and θw is the reflecting wedge angle.

The following boundary conditions were imposed:
(i) zero slip velocity components along the wedge surface;
(ii) symmetry boundary conditions at the axis of symmetry upstream of the leading

edge of the reflecting wedge;
(iii) ∂p/∂n = (∇ · τ )n where p is the pressure, τ is the viscous stress tensor and n a

direction normal to the reflecting wedge surface;
(iv) constant temperature that is equal to the initial temperature along the reflecting

wedge surface;
(v) the parameters of the quiescent unperturbed gas at the boundary TD;
(vi) the parameters of the gas behind the incident shock wave for all the other

boundaries.
The version of the W-modification of Godunov’s scheme, which was previously

employed by Ben-Dor et al. (1999), was modified to solve the Navier–Stokes equations
using a splitting into physical processes. The viscous terms were approximated using
an explicit scheme with central differences in space and a two-step Runge–Kutta
method in time. At low Reynolds numbers at which one time step was used for
the solution of inviscid gas equations several time sub-steps for the viscous terms
were used. The number of time sub-steps required was determined by estimating a
time step necessary for the stability of the marching method for the heat conduction
equation. Thus, the Navier–Stokes solver employed had second-order accuracy both
in space and time. In addition, a procedure for tracking the shock wave fronts and
a mesh refinement technique near the triple point (for details see Henderson et al.
2003) were applied.

After each time step the length OE (figure 1) was used to normalize the coordinates
of the mesh points. Thus, once the solution attained a self-similar state, the mesh and
all the flow parameters became constant. The calculations were performed until the
solution attained this state. The absolute value of both the time derivatives of the
density and the trajectory angle of the triple point (node), were used as quantitative
estimates of the degree of unsteadiness. The calculations showed that the latter
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estimate was the most robust since the triple-point trajectory angle was found to be
the slowest to attain the self-similar state. Note that renormalization of the mesh
coordinates at each time step was performed only for convenience and did not affect
the results of calculations.

In all the cases where the jets were stable, the self-similar state was attained with
high accuracy. When the jet was unstable, the calculation times were two to three
times longer than those with stable jets.

The majority of calculations were performed for an incident shock wave Mach
number Mi =4.5, and a wedge angle θw = 36◦, using a 420 × 100 mesh. The mesh
was refined by a factor 2 near the reflecting wedge surface in the region inside
the boundary layer. Note that Henderson et al. (2003) presented calculations for
an inviscid flow with exactly these values. The Reynolds number, Re = ρ0a0L/µ0,
was changed in the range 500 � Re � 40 000. As was noted above, this parameter
characterized the characteristic lengthscale of the flow.

In the final part of the paper a grid convergence of the numerical method and
a comparison with an experimental result are presented for an incident shock wave
Mach number Mi = 3.22, and a wedge angle θw = 32◦.

3. Numerical results
3.1. Self-similar viscous flow model

The isopycnics (constant-density contours) in the vicinity of a Mach stem for a Mach
reflection for the case of a self-similar viscous flow, for Reynolds numbers in the
range 500 � Re � 2200 are shown in figure 2. The following characteristic features of
the flow field should be noted:

(i) in all the cases calculated the solutions obtained are stable, i.e. they are
stationary in a moving frame of reference;

(ii) the Mach stem is significantly curved near the wall due to the effect of the
boundary layer that is clearly visible behind its front;

(iii) the height of the Mach stem and the triple-point trajectory angle strongly
increase when the Reynolds number increases;

(iv) the contact surface (slipstream) emanating from the triple point and the jet
near the wall are strongly smeared by the viscosity;

(v) at Re < 2000 the wall-jet is attached to the boundary layer, and there is a
counterclockwise-rotating vortex at its end;

(vi) at Re � 2000 the jet is lifted above the boundary layer, and a clockwise rotating
suspended vortex is formed at its end.

Feature (vi) is clearly visible in figure 3 where the streamlines in a self-similar frame
of reference are shown for Re = 2000. The streamlines of the fluid particles that passed
through the reflected shock wave and those that passed through the Mach stem are
shown separately in parts (a) and (b) of the figure, respectively. An additional vortex
between the wall-jet and the contact surface is clearly seen (see (b)) apart from the
above-mentioned suspended vortex. Only those fluid particles that passed through the
upper part (about the upper third part) of the Mach stem are seen to flow into this
vortex.

It was noted above when figure 2 was discussed that a decrease of the Reynolds
number results in a decrease in the slope of the trajectory of the triple point. Thus
one can ask whether the Mach stem disappears at Re = 0 or at Re > 0. The model
which has been employed in the present study does not provide an exact answer to
this question for the following two reasons. The first is that the shock wave tracking
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Figure 2. Isopycnics near the Mach stem for the self-similar viscous flow model for different
Reynolds numbers. The flow fields are stable.

technique that used in the present numerical investigation implies that the shock
wave fronts are discontinuities, i.e. infinitely thin. However, it is well-known that at
sufficiently small Reynolds numbers the finite width of the shock wave cannot be
neglected. The second reason is that calculations of the viscous effects using an explicit
scheme, as has been done in the present study, require prohibitively high CPU-time
when the Reynolds number and the cell size become smaller in the vicinity of the
Mach stem. However, calculations performed with a small increment in the Reynolds
number enable one to extrapolate the results to Re → 0.

The calculated dependences of the slope of the triple-point trajectory and the Mach
number of the Mach stem near the wall on the Reynolds number, for Re � 350, for
the case of a self-similar viscous flow model are shown in figure 4. Extrapolation
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(a)

(b)

Figure 3. The streamlines that passed through (a) the reflected and (b) Mach stem shock
waves for the self-similar viscous flow model with Re =2000.
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Figure 4. Dependence of (a) the triple-point trajectory angle and (b) the Mach number of
the Mach stem near the reflecting wedge surface on the Reynolds number. The dashed lines
denote extrapolation of the numerical results into the lower-Reynolds-numbers regime.
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of the results to smaller Reynolds numbers, shown by dashed lines, shows that
the Mach stem disappears at a finite Reynolds number Re ≈ 250. At this Reynolds
number the slope of the triple-point trajectory vanishes and the Mach number of the
Mach stem attains the value of Mi/ cos θw , which corresponds to a regular reflection.
Consequently, a Mach reflection does not occur at small Reynolds numbers in the
self-similar viscous flow model.

Note that the self-similar viscous flow model underestimates the viscous effects
compared with the real non-stationary flow. Therefore in the full non-stationary
formulation these effects will be more pronounced. At the early stage of the reflection
of the shock wave from the wedge, when the instantaneous Reynolds number is not
high, there is no Mach stem and it will appear only after some finite time. Thus, there
is a delay in the appearance of the Mach reflection. Since in order to be observed
experimentally, the Mach stem must attain a height of the order of 1–2 mm the delay
in the appearance of the Mach reflection could be quite significant (for more details
regarding the delay in the appearance of the Mach reflection see Henderson et al.
2001; Adachi, Sakurai & Kobayashi 2002).

The isopycnics for the self-similar viscous flow model with characteristic sizes
that correspond to Reynolds numbers in the range 2500 � Re � 15 000 are shown in
figure 5. The principal characteristic feature in all the cases is that the stationary
flows are unstable. The suspended vortex at the end of the wall-jet oscillates between
the contact surface (slipstream) and the reflecting wall surface.

Various phases of this oscillation phenomenon are clearly visible in the frames
of figure 6, where the temporal evolution of the vortex oscillations for Re= 3500
is shown. The time interval between the frames, in figure 6, is equal to 0.1 of the
oscillation period. It can be seen that the oscillations affect the shape of the second
Mach stem, and that the bottom part the second Mach stem is essentially non-
stationary. An inspection of frames (a) and (k) and (b) and (l), which are practically
identical, suggests that an almost perfect periodicity of the oscillations exists in this
case.

Note that the W-modification of the Godunov method has already been used for
investigating pulsations in a self-similar flow and it was verified against other methods
of the Godunov type (Vasilev & Danilchuk 1996).

A quantitative estimate of the stationarity of the flow field was calculated using the
discrete analogue of the residual (for more details see Vasilev 1998):

Rn =
1

S

∫∫
S

1

ρ

∣∣∣∣∂ρ∂ t

∣∣∣∣ ds,

where S is the domain occupied by the flow field. The behaviour of Rn on a logarithmic
timescale for the developed oscillatory flows, for Re = 3000, 4500 and 6000, is shown
in figures 7(a), 7(b) and 7(c), respectively. One unit on the logarithmic timescale
corresponds to a real time interval during which the size of the flow field is doubled.
It can be seen that at Re =3000 (figure 7a) the oscillations are periodic and the
period is close to unity, i.e. to the value of the flow size doubling time. At Re= 4500
(figure 7b) the subsequent oscillations have different shapes and a period doubling is
observed, i.e. each second oscillation has the same shape (more precisely the period
grows by a factor slightly larger than 2). At Re= 6000 (figure 7c) a second period
doubling is observed, i.e. each fourth oscillation has the same shape. However, as can
be clearly seen in the figure, exact periodicity is not observed. When the Reynolds
number increases further the latter tendency remains, i.e. a period doubling occurs but
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Figure 5. Isopycnics for the self-similar viscous flow model for different Reynolds numbers.
The flow fields are unstable.

the repeatability of the oscillations is not as good. Thus a transition to non-periodic
oscillations, i.e. a transition to a turbulent flow pattern in the wall-jet occurs.

At Re> 10 000 (see figure 5) a qualitative change in the behaviour of the wall-jet is
seen to take place. Almost the entire wall-jet is attached to the reflecting wall surface
except for the vortex at its end. The end vortex performs non-periodic oscillations
whereby a separation zone is formed at the end of the wall-jet due to its interaction
with the boundary layer. Then a clockwise-rotating vortex is formed; the initial stage
of this process is seen in figure 5 at Re =15 000. This vortex separates from the wall
surface together with the trailing part of the wall-jet and the stream carries it to the
leading part of the wall-jet. The initial stage of this process is seen in figure 5 at
Re = 12 000. Then all the cycles repeat. Note that this is the main difference between
the behaviour of the wall-jets in the viscous and the inviscid flow models. In the
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(d) (e) ( f )
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Figure 6. Isopycnics with periodic oscillations of a suspended end vortex in a jet for an
unstable self-similar viscous flow model with Re =3500.

latter model the oscillations of the wall-jet are not accompanied by a separation of
its trailing part.

3.2. Non-stationary viscous flow model

In order to study truly non-stationary viscous flows a self-similar solution at Re =500
was selected as an initial condition. In the calculations with a moving mesh the incident
shock wave and the Mach stem were located initially to the right of the leading edge
of the reflecting wedge, and the flow behind the Mach stem was inhomogeneous.
Note that in the inviscid flow calculations the choice of the initial conditions was
not important since in the case of pseudo-stationary flows, when oscillating flows
were analysed, we were looking for the stationary solution or for a settled solution.
Therefore in that case the calculations were performed until the solution ‘forgot’
the initial conditions, i.e. until the initial conditions ceased to affect the resulting
solution. In the non-stationary problems the duration of the process (and, therefore,
the calculation time) was determined by the problem, and we were also interested
in knowing the intermediate states. Therefore, in this case the initial conditions were
degenerate since they corresponded to Re = 0, and we wished to start from some
small Re > 0. The calculations with small Reynolds numbers using explicit schemes
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Figure 7. Oscillations of Rn for an unstable self-similar viscous flow vs. logarithm of the
time for (a) Re= 3000, (b) Re= 4500, (c) Re= 6000.

required small time steps in order to secure the stability of the finite difference scheme.
In this study our calculations started from Re= 500, and it was assumed that prior
to this moment the flow developed as a self-similar viscous flow.

The time evolution of the wall-jet obtained using the truly non-stationary viscous
flow model is shown in figure 8. It can be seen that at small instantaneous Reynolds
numbers the solutions are more or less identical to those obtained using a self-similar
approach (compare with figure 2). Only starting from a certain Reynolds number is
the delay in the flow pattern with respect to a Reynolds number observed, i.e. similar
solutions are obtained in the non-stationary viscous flow at larger instantaneous
Reynolds numbers (note that a delay in the size is equivalent to a delay the time).
The stage when the wall-jet is lifted above the reflecting wedge surface occurred
considerably later than in the self-similar viscous flow model case (from Re ≈ 8000).

There is also not enough time for the formation of the wall-jet with a suspended
vortex as occurs in the flow field shown in figure 2 since during this time the
instantaneous Reynolds number increases considerably, and the stage when the wall-
jet is attached to the reflecting wedge surface begins (from Re ≈ 18 000). At large
instantaneous Reynolds numbers the flow in the wall-jet is seen to be identical to that
in the case of a self-similar viscous flow model with oscillations.

The quantitative differences between the self-similar and the truly non-stationary
viscous flow cases can be seen in figure 9 where the dependence of the triple-point
trajectory angle on the Reynolds number (i.e. the linear size which in the non-
stationary flow case depends on the time, i.e. Re = ρ0a0Dt/ (µ0 cos θw)) is shown. The
curves with the black dots correspond to the case of a self-similar viscous flow model.
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Figure 8. Temporal evolution of a jet for the non-stationary viscous flow model. The
instantaneous Reynolds number is shown on the frames.

The upper curve corresponds to the maximum value of the triple-point trajectory
angle at the stage where the oscillations began while the lower curve corresponds to
the minimum value of the triple-point trajectory angle. These curves merge into a
single curve at the point where the oscillations disappear, and hence it corresponds to
the stable self-similar solution. The solid line without the black dots shows the case
of the truly non-stationary viscous flow model. Clearly, in this case the triple-point
trajectory angle and the height of the Mach stem grew more slowly than in the case
of the self-similar viscous flow model.

Similar results for the Mach number of the foot of the Mach stem at the reflecting
wall surface are shown in figure 10. Here the situation is somewhat different, i.e. in
the case of a truly non-stationary viscous flow the velocity of the Mach stem grows
faster than in the self-similar viscous flow case. The reason is associated with the non-
stationary effects. In a self-similar flow the Mach stem velocity, Dm,ss , is proportional
to its coordinate, while in a non-stationary flow the Mach stem velocity, Dm, equals
the time derivative of the coordinate:

Dm,ss =
Xm

t
=

Xm

L

D

cos θw

, Dm =
d Xm

d t
·

In a self-similar flow these values are equal. In a non-stationary flow they are different
and the difference between them characterizes the magnitude of non-self-similarity.
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Figure 9. Slope of the trajectory of a triple point versus the instantaneous Reynolds number
(vs. linear dimension) for the self-similar (curves with black dots) and non-stationary (plain
solid lines) viscous flow models.
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Figure 10. Mach number of the Mach stem near the wall versus the instantaneous Reynolds
number (vs. linear dimension) for the self-similar (curves with black dots) and non-stationary
(plain solid lines) viscous flow models. Dashed line is the average velocity of the stem in the
non-stationary viscous flow.

In a non-stationary flow Dm,ss , in a time t, is the average velocity of the Mach stem
in the time interval [0, t]. This average velocity for the non-stationary viscous flow
is shown in figure 10 as a dashed line. It is seen that the average velocities in the
self-similar flow and in the non-stationary flow correlate well with the triple-point
trajectory angles. But the actual Mach stem velocity in the truly non-stationary viscous
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flow is larger than the Mach stem velocity in the self-similar viscous flow due to the
non-stationary effect. Indeed, this can be easily shown analytically assuming a straight
Mach stem. The difference between the self-similar and non-stationary viscous flow
velocities of the foot of the Mach stem is proportional to the time derivative of the
triple-point trajectory angle, which is positive in the non-stationary viscous flow case:

Xm = Dt
sin χ

cos(χ + θw)
,

Dm =
dXm

d t
= D

sin χ

cos(χ + θw)
+ Dt

cos θw

cos2(χ + θw)

dχ

d t
.

The additional term (with the derivative dχ/dt) is the reason for the higher velocity
of the foot of the Mach stem in the non-stationary viscous flow case while for a triple-
point trajectory angle the situation is the opposite.

It can be clearly seen in figure 10 that the destabilization of the non-stationary flow
occurs much later than in the self-similar viscous flow case. The delay time equals
2 units, i.e. if the self-similar viscous flow is stable until it reaches the size L, the
non-stationary flow is stable at least until it reaches the size 4L.

4. Comparison with experiments and the grid convergence of the computations
A correct comparison between the computational and experimental results can be

conducted only at low instantaneous Re, i.e. at the stage when the jetting instability
is not the dominating factor. Unfortunately, information in the scientific literature
about such experiments is scarce. One example is illustrated in Bazhenova et al.
(1986, p. 62). A scaled-up fragment of the schlieren photograph of this experiment is
shown in figure 11(a). The incident shock wave propagated in nitrogen with Mach
number Mi =3.22, and wedge angle θw =32◦; the pressure ahead of the incident shock
wave was p0 = 5 torr (i.e. 0.00657 atm). Owing to the low pressure the instantaneous
Reynolds number for the experimental snapshot is rather small Re ≈ 12 000–13 000.
The calculations were conducted using the non-stationary viscous flow model on
a grid 800 × 240. The numerical density contour lines for Re = 12 500 are shown
in figure 11(b). By the time the photograph was taken the jet had already been
lifted above the boundary layer. At a later time the jet instability process began to
develop. Overall there is very good agreement between the experimental result and
the numerical simulation regarding the location and shapes of both the shock waves
and the jet configurations.

The effect of mesh refinement on the accuracy of the calculations (i.e. the
convergence on a grid) is demonstrated in figure 12. Isopycnics from the self-similar
viscous flow model for two different grids (with factor 2 difference in each direction)
are shown. The incident shock wave Mach number is Mi = 3.22, the wedge angle is
θw = 32◦, and the Reynolds number is Re = 4000. The Reynolds number was selected
so that the jet had already been lifted above the boundary layer but still preserved
its stability (for example, see figure 2, Re = 2000 and 2200). It is evident that the
isopycnics are practically identical in spite the fact that grids are different. This
verifies both the convergence of the numerical method and sufficient grid resolution.

5. Summary and conclusions
The wall-jetting effect in Mach reflections in viscous pseudo-steady flows (as

obtained in shock tubes) has been investigated numerically. The W-modification
of Godunov’s scheme was modified to solve the Navier–Stokes equations by splitting
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(a)

(b)

Figure 11. Comparison between an experiment (a), and the corresponding numerical
simulation (b), for the non-stationary viscous flow. The incident shock wave Mach number is
Mi =3.22, the wedge angle is θw = 32◦. The instantaneous Reynolds number is Re= 12 500.

(a) (b)

Figure 12. Isopycnics for the self-similar viscous flow model, calculated on two different grids,
for Mi = 3.22, θw = 32◦ and Re= 4000. (a) 500 × 150 grid; (b) 1000 × 300 grid. The density
contour increment is �ρ/ρ0 = 0.07.

into physical processes. The viscous terms were approximated using an explicit scheme
with central differences in space and a two-step Runge–Kutta method in time. Two
analytical models were considered. The first was a self-similar viscous flow model
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with a flow field of characteristic size L, and assuming that as the characteristic size
grew from 0 to L, the viscosity of the gas ahead of the shock wave varied from
0 to µ0. Consequently, the flow could be made self-similar by using the parameter
Re= ρ0a0L/µ0. The second was a real non-stationary viscous flow, in which the
molecular viscosity during the growth of the characteristic size from 0 to L remained
constant and was equal µ0. As a result the viscous effects were only partially accounted
for in the self-similar viscous flow model in comparison to a real non-stationary
viscous flow model, since they were smaller in the former case.

It was found in the case of the self-similar viscous flow model that:
(i) in all cases at Re < 2000 the solutions obtained were stable;
(ii) the Mach stem was significantly curved near the wall;
(iii) the height of the Mach stem and the triple-point trajectory angle strongly

increased when the Reynolds number increased;
(iv) the delay in the appearance of the Mach reflection suggested recently by

various investigators has been observed;
(v) the contact surface emanating from the triple point and the jet near the wall

were strongly smeared by the viscosity;
(vi) at Re < 2000 the wall-jet was attached to the boundary layer, and there was

a counterclockwise-rotating vortex at its end;
(vii) at Re � 2000 the jet was lifted above the boundary layer, and a clockwise-

rotating suspended vortex was formed at its end.
(viii) at Re � 2200 the steady flow lost stability. The suspended vortex at the end

of the wall-jet oscillated between the contact surface (slipstream) and the reflecting
wall surface.

In the case of the non-stationary viscous flow model it was found that:
(i) the solutions at small Reynolds numbers were very similar to those obtained

using the self-similar viscous flow model case;
(ii) the stage when the wall-jet was lifted above the reflecting wedge surface

occurred considerably later than for the self-similar viscous flow model;
(iii) the triple-point trajectory angle and the height of the Mach stem grew more

slowly than for the self-similar viscous flow model.
(iv) the velocity of the Mach stem was found to grow faster than for the self-similar

viscous flow.
(v) the destabilization of the non-stationary flow occurs much later than for the

self-similar viscous flow.
The present investigation complements our previous investigation of the wall-jetting

effect in Mach reflection in inviscid pseudo-steady flows (Henderson et al. 2003).

This study was conducted under the auspices of the Dr Morton and Toby Mower
Chair of Shock Wave Studies.
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